Regulation of Autocrine Signaling in Subsets of Sympathetic Neurons Has Regional Effects on Tissue Innervation

نویسندگان

  • Thomas G. McWilliams
  • Laura Howard
  • Sean Wyatt
  • Alun M. Davies
چکیده

The regulation of innervation by target-derived factors like nerve growth factor (NGF) is the cornerstone of neurotrophic theory. Whereas autocrine signaling in neurons affecting survival and axon growth has been described, it is difficult to reconcile autocrine signaling with the idea that targets control their innervation. Here, we report that an autocrine signaling loop in developing mouse sympathetic neurons involving CD40L (TNFSF5) and CD40 (TNFRSF5) selectively enhances NGF-promoted axon growth and branching, but not survival, via CD40L reverse signaling. Because NGF negatively regulates CD40L and CD40 expression, this signaling loop operates only in neurons exposed to low levels of NGF. Consequently, the sympathetic innervation density of tissues expressing low NGF is significantly reduced in CD40-deficient mice, whereas the innervation density of tissues expressing high levels of NGF is unaffected. Our findings reveal how differential regulation of autocrine signaling in neurons has region-specific effects on axon growth and tissue innervation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An autocrine Wnt5a-Ror signaling loop mediates sympathetic target innervation.

During nervous system development, axon branching at nerve terminals is an essential step in the formation of functional connections between neurons and target cells. It is known that target tissues exert control of terminal arborization through secretion of trophic factors. However, whether the in-growing axons themselves produce diffusible cues to instruct target innervation remains unclear. ...

متن کامل

Egr3 Dependent Sympathetic Target Tissue Innervation in the Absence of Neuron Death

Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor r...

متن کامل

Abnormal sympathetic nervous system development and physiological dysautonomia in Egr3-deficient mice.

Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling a...

متن کامل

Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation.

In this report, we provide evidence that NGF and BDNF have functionally antagonistic actions on sympathetic neuron growth and target innervation, with NGF acting via TrkA to promote growth and BDNF via p75NTR to inhibit growth. Specifically, in cultured sympathetic neurons that themselves synthesize BDNF, exogenous BDNF inhibits and function-blocking BDNF antibodies enhance process outgrowth. B...

متن کامل

A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation.

Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015